## Achievements and trusted in a wide range of fields

#### Energy and petroleum industry

Crude oil, Asphalt, Pitch, Surfactants, Emulsion fuel, Biofuel, Nuclear power, Various storage tanks, etc.

#### Coal industry

COM, CWM, Surfactants, etc.

#### Metal industry

Quenching tank, Heat resistant furnace material, Cooling water, Wire manufacturing, Aluminum hydroxide, Molten lead, Plating, etc.

#### Oil and fat industry

Soap, Animal and vegetable oil, Butter, Lard, Tallow, Margarine, Lubricant, Cooking oil. Various storage tanks, etc.

#### Synthetic resin industry

Vinyl chloride, Polyester, Adhesive, Cellulose, Plastic, Polypropylene, ABS resin,

#### Dye industry

Colored powder, Titanium oxide, Viscose, Pigment, etc.

#### Paint industry

Ink, Paint, Solvent, etc.

#### Pharmaceutical industry

Dye, Perfume, Emulsion, Various medical products, Cosmetics, Synthetic

#### Livestock agriculture industry

Fertilizer (Phosphoric acid, Potash, Ammonium sulfate, Lime) Feed, Ammonia, Insect repellent, Pesticide, etc.

#### Electronic industry

Ceramics, Magnetic iron powder, Iron oxide, Silicone, etc.

#### Rubber industry

Natural rubber, Synthetic rubber, Latex, Solvent, etc.

Acrylic fiber, Acetate, Nylon, Polyester, Vinylon, Solvent, Adhesive paste, etc.

#### Paper making industry

Pulp, Casein, Kaolin, Talc, Clay, Size, Aluminum sulfate, PVA, CMC, Black liquor, Green liquor, Paint, Rosin, Magnesium hydroxide, etc.

#### Ceramic engineering

Ceramic clay, Insulator, Glaze, etc.

#### Civil engineering and construction industry

Cement, Mortar, Paint, etc.

#### Food industry

Cream, Chocolate, Milk, Sauce, Mayonnaise, Dressing, Fruit juice, Ketchup, Coffee, Seasoner, Salt, Sugar, Flour, Food additives, Sweetener, Perfume,

#### Brewing industry

Sake, Whiskey, Beer, Shochu, Diatomite, etc.

#### Fermentation industry

Soy sauce, Vinegar, Miso, Unrefined sake, Bio reactor, etc.

#### Other plant equipment

Chemical dissolution, Coal, Heat transfer oil, Cutting oil, etc.

#### Prevention of air pollution

Caustic soda, Calcium carbonate, Flue gas desulfurization, etc.

#### Water purifying plant

City water, Industrial water, Active carbon, Chlorine, Caustic soda, Chemicals,

#### Waste water and effluent treatment plant

Polymer coagulant, Diatomite, Aluminum sulfate, Ferric sulfate, Caustic soda, Sulfuric acid, Sludge tank, Biological reactor, Sodium hypochlorite, Rapid mixing, Moderate mixing, etc.

# https://www.satake.co.jp 回器回 info@satake.co.jp







repair, and sales management of

Satake Multi-S Mixer® and Supermix® are registered trademarks of SATAKE MultiMix Corporation.

We are constantly committed to improve the quality of our products, thereby the design and specifications of our products may differ from those shown in the catalog. Please understand this in advance.

We are dedicated to manufacture products that



## SATAKE MultiMix Corporation

66, Niizo, Toda-shi, Saitama 335-0021, Japan Phone: 81-48-433-8711 Fax: 81-48-433-8541 Tokyo Office Osaka Office 2-18-8, Toko-cho, Moriguchi-shi, Osaka 570-0035, Japan

and Plant : Phone: 81-6-6992-0371 Fax: 81-6-6998-4947 1-21-9, Heiwa, Naka-ku, Nagoya-shi, Aichi 460-0021, Japan Service Center Phone: 81-52-331-6691 Fax: 81-52-331-2162

Mixing Technology 60, Niizo, Toda-shi, Saitama 335-0021, Japan Laboratory: Phone: 81-48-441-9200 Fax: 81-48-444-1042

#### (Overseas associated company)

Satake (Shanghai) Trading Co., Ltd.

Room 605, Huaihai Zhonghua Building, 885 Renmin Road, Shanghai 200010 China Phone: 86-21-6437-7101

Dalian Satake Chemical Equipment Co., Ltd. No.8 Qingdao Road, Lushun Economic Development Zone, Dalian 116052, China Phone: 86-411-3936-8689 Fax: 86-411-3936-8690

95. Gaiaeul-ro, Seo-Gu, Incheon 22830, KOREA

Phone: 82-32-583-6321 Fax: 82-32-583-6329

Taiwan Kwan-Tai Machinery Co., Ltd.
25, Ln. 227, Fuxing Rd., Luzhou District, New Taipei City 24744, Taiwan Phone: 886-2-2281-9166 Fax: 886-2-2282-4946



'21.3.1T(G)19C Printed in Japan

## Consistently on the cutting edge

# SATAKE MULTI SMIXERS





### S0~S2 Series

## **More powerful and compact than ever before!**

Discover the advanced Multi S Mixers.

The new Multi-S mixers are more compact, yet more powerful body than the previous model, as well also it come with a new Supermix® blade for the "impeller blade," the core part of a mixer.

Be sure to check out the new Multi S Mixers.

### Compact Body

The overall height of the S2 gland packing type has been reduced by 15% compared to the previous type. It is suitable for a wide range of applications.



### Easy mechanical seal replacement

A simple detachable structure type has been added to the single, double, and dry mechanical seals. Therefore, maintenance for the replacement of mechanical seal has been improved.

#### Wide variety of seals lineup

A wide variety of seals are available, including open, gland packing, single, double, and dry mechanical

#### Suitable for sanitary specifications

In addition to the mechanical seal, the structure of the main body has been improved, and SUS frame (optional) can be selected for the body.

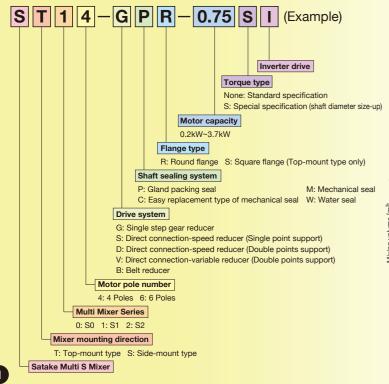
#### High reliability gear

A high reliability Bakelite gear has been used based on many years of experience. This gear has proven to be long-lasting and quiet operation.

#### High efficiency impeller

The novel high-performance of "Supermix® "HR700 impeller (for medium speed) and HS400 impeller (for low speed) are used. Experience the superior performance of these impellers.

#### One size smaller than the previous model is possible


By revising the main body structure, it became possible to achieve the same level of mixing with one size smaller than the previous model. The high efficiency impeller has a synergy effect to reduce


By introducing automatic design programs and revising our production system, we were able to shorten delivery time and reduce costs.

#### Hook hole for hanging

Standard type has a hole for a hook. This makes it easier to install and remove the unit.

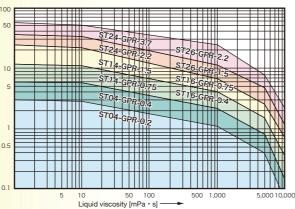
### Model coding





G Type

Single step






#### To determine motor capacity from mixing volume

Mixing purpose, mixing time, and liquid viscosity are the most important factors in selecting the mixer type and motor capacity from the mixing volume. Below is a selection graph for the most common case of mild and uniform mixing of soluble liquid-liquid phase.

In case of inquiry, please specify the details as much as possible.



- \* The graph shows the case of with baffles or off-center position
- \*The mixing time required is 5 minutes or less for liquid-liquid phase. However, the mixing volume may be increased or decreased depending on the mixing purpose. \*Please consult us if the liquid viscosity is more than 1000 mPa·s or the specific
- \* Please refer Satake Multi S Mixer (S3~S9 series) catalog for larger mixer.

#### Model variations

#### Top-mount type

#### G Type: Single step gear reducer

S1S, S2S is specification for shaft diameter size up

| Drive                    | Impeller<br>speed    | Gear    |     | I.  | ∕lotor po | ower (kV | <b>V</b> ) |     |
|--------------------------|----------------------|---------|-----|-----|-----------|----------|------------|-----|
| system                   | (min <sup>-1</sup> ) | ratio   | 0.2 | 0.4 | 0.75      | 1.5      | 2.2        | 3.7 |
| _                        | 350                  | 4.1     | ٥   | 60  | 01/       | S1S      |            |     |
| G                        | 280                  | 5       | ,   |     | 31/       |          |            |     |
| Single step gear reducer | 230                  | 4.1(6P) |     |     |           | S2/      | S2S        |     |
| 3                        | 190                  | 5(6P)   |     |     |           | 02/      | 020-       |     |

| Drive        | Impeller<br>speed    | Gear    |     | N   | Notor po | wer (kV | /)  |     |
|--------------|----------------------|---------|-----|-----|----------|---------|-----|-----|
| system       | (min <sup>-1</sup> ) | ratio   | 0.2 | 0.4 | 0.75     | 1.5     | 2.2 | 3.7 |
| G            | 350                  | 5       | S   | 0   |          |         |     |     |
| Single step  | 280                  | 4.1(6P) |     | S1/ | S1S      | S2/     | S2S |     |
| gear reducer | 230                  | 5(6P)   |     |     |          |         |     |     |

<sup>\*</sup>The 2-stage gear reducer and 3-stage gear reducer of the previous model have been replaced by a direct connection to the reducer

#### D·V Type: Direct connection-speed reducer and variable reducer (Double points support) [for Cyclo speed reducer]

| Drive                    | Impeller<br>speed    | Gear  |     | N    | Notor po | wer (kW | /)  |     |
|--------------------------|----------------------|-------|-----|------|----------|---------|-----|-----|
| system                   | (min <sup>-1</sup> ) | ratio | 0.2 | 0.4  | 0.75     | 1.5     | 2.2 | 3.7 |
|                          | 132                  | 11    |     |      |          |         |     |     |
|                          | 112                  | 13    |     |      |          |         |     |     |
|                          | 96.7                 | 15    | S0  | C1/  | S1S      | 60/     | S2S |     |
|                          | 85.3                 | 17    |     | -31/ | 313      | 32/     | 323 |     |
| D                        | 69                   | 21    |     |      |          |         |     |     |
| Direct                   | 58                   | 25    |     |      |          |         |     |     |
| connection-speed reducer | 50                   | 29    |     |      |          |         |     |     |
| (Double points)          | 41.4                 | 35    |     |      |          |         |     |     |
| ( support )              | 33.7                 | 43    |     |      |          |         |     |     |
|                          | 28.4                 | 51    |     |      |          |         |     |     |
|                          | 24.6                 | 59    |     |      |          |         |     |     |
|                          | 20.4                 | 71    |     |      |          |         |     |     |
|                          | 16.7                 | 87    |     |      |          |         |     |     |

| Drive                    | Impeller<br>speed<br>(min <sup>-1</sup> ) | Gear  |     | N   | ∕lotor po | ower (kV | V)  |     |
|--------------------------|-------------------------------------------|-------|-----|-----|-----------|----------|-----|-----|
| system                   | (min <sup>-1</sup> )                      | ratio | 0.2 | 0.4 | 0.75      | 1.5      | 2.2 | 3.7 |
|                          | 159                                       | 11    |     |     |           |          |     |     |
|                          | 135                                       | 13    |     |     |           |          |     |     |
|                          | 117                                       | 15    | S0  |     |           |          |     |     |
|                          | 103                                       | 17    |     | Q1/ | S1S       | S2/      | 200 |     |
| D                        | 83.3                                      | 21    |     |     | 313       | - 32/    | 323 |     |
| Direct                   | 70                                        | 25    |     |     |           |          |     |     |
| connection-speed reducer | 60.3                                      | 29    |     |     |           |          |     |     |
| Double points            | 50                                        | 35    |     |     |           |          |     |     |
| support                  | 40.7                                      | 43    |     |     |           |          |     |     |
|                          | 34.3                                      | 51    |     |     |           |          |     |     |
|                          | 29.7                                      | 59    |     |     |           |          |     |     |
|                          | 24.6                                      | 71    |     |     |           |          |     |     |
|                          | 20.1                                      | 87    |     |     |           |          |     |     |

ble in a wide range of model variations, allowing you to select one size smaller model compared

\* Please consult us for V type of direct connection-variable reducer (double points support)

#### S Type: Direct connection-speed reducer (Single point support) [for Cyclo speed reducer]

| Drive                    | Impeller<br>speed    | Gear  |      | N   | ∕lotor po | wer (kV | <b>/</b> ) |     |
|--------------------------|----------------------|-------|------|-----|-----------|---------|------------|-----|
| system                   | (min <sup>-1</sup> ) | ratio | 0.2  | 0.4 | 0.75      | 1.5     | 2.2        | 3.7 |
|                          | 132                  | 11    |      |     |           |         |            |     |
|                          | 112                  | 13    |      |     |           |         |            |     |
|                          | 96.7                 | 15    |      |     |           |         |            |     |
|                          | 85.3                 | 17    | -S1- |     | -S2-      |         |            |     |
| s                        | 69                   | 21    | -51  |     | -52-      |         |            |     |
| Direct                   | 58                   | 25    |      |     |           |         |            |     |
| connection-speed reducer | 50                   | 29    |      |     |           |         |            |     |
| (Single point support    | 41.4                 | 35    |      |     |           |         |            |     |
| ( support )              | 33.7                 | 43    |      |     |           |         |            |     |
|                          | 28.4                 | 51    |      |     |           |         |            |     |
|                          | 24.6                 | 59    |      |     |           |         |            |     |
|                          | 20.4                 | 71    |      |     |           |         |            |     |
|                          | 16.7                 | 87    |      |     |           |         |            |     |

| Drive                    | Impeller                      | Gear  |      | N   | /lotor pc | wer (kV | /)  |     |
|--------------------------|-------------------------------|-------|------|-----|-----------|---------|-----|-----|
| system                   | speed<br>(min <sup>-1</sup> ) | ratio | 0.2  | 0.4 | 0.75      | 1.5     | 2.2 | 3.7 |
|                          | 159                           | 11    |      |     |           |         |     |     |
|                          | 135                           | 13    |      |     |           |         |     |     |
|                          | 117                           | 15    |      |     |           |         |     |     |
|                          | 103                           | 17    | -S1- |     | -S2-      |         |     |     |
| s                        | 83.3                          | 21    | -51- |     | -52-      |         |     |     |
| Direct                   | 70                            | 25    |      |     |           |         |     |     |
| connection-speed reducer | 60.3                          | 29    |      |     |           |         |     |     |
| (Single point support    | 50                            | 35    |      |     |           |         |     |     |
| ( support )              | 40.7                          | 43    |      |     |           |         |     |     |
|                          | 34.3                          | 51    |      |     |           |         |     |     |
|                          | 29.7                          | 59    |      |     |           |         |     |     |
|                          | 24.6                          | 71    |      |     |           |         |     |     |
|                          | 20.1                          | 87    |      |     |           |         |     |     |

#### G Type: Single step gear reducer

#### 50Hz

| Drive                       | Impeller<br>speed    | Gear    |     | N   | ∕lotor po | wer (kV | /)   |     |
|-----------------------------|----------------------|---------|-----|-----|-----------|---------|------|-----|
| system                      | (min <sup>-1</sup> ) | ratio   | 0.2 | 0.4 | 0.75      | 1.5     | 2.2  | 3.7 |
|                             | 350                  | 4.1     |     | .0  | S1-       |         | -s2- |     |
| G                           | 280                  | 5       |     |     | 31        |         | 32   |     |
| Single step<br>gear reducer | 230                  | 4.1(6P) |     |     |           |         |      |     |
| 9                           | 190                  | 5(6P)   |     |     |           |         |      |     |

#### 60Hz

| Drive       | Impeller<br>speed    | Gear    |     | N   | Notor po | wer (kW | /)   |     |
|-------------|----------------------|---------|-----|-----|----------|---------|------|-----|
| system      | (min <sup>-1</sup> ) | ratio   | 0.2 | 0.4 | 0.75     | 1.5     | 2.2  | 3.7 |
| G           | 350                  | 5       | S   | 0   | —S1—     |         | -S2- |     |
| Single step | 280                  | 4.1(6P) |     |     | -31-     |         | -52- |     |
| ear reducer | 230                  | 5(6P)   |     |     |          |         |      |     |

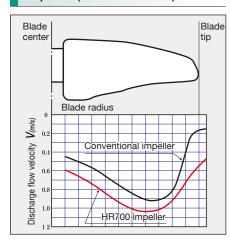
#### B Type: Belt reducer

| 30112        |                      |         |     |     |           |         |            |     |
|--------------|----------------------|---------|-----|-----|-----------|---------|------------|-----|
| Drive        | Impeller<br>speed    | Gear    |     | N   | ∕lotor po | wer (kV | <b>/</b> ) |     |
| system       | (min <sup>-1</sup> ) | ratio   | 0.2 | 0.4 | 0.75      | 1.5     | 2.2        | 3.7 |
|              | 350                  | 4.1     |     |     |           |         |            |     |
| В            | 280                  | 5       |     | c   | 31        |         | S2_        |     |
| Belt reducer | 230                  | 4.1(6P) |     |     |           |         | _ 32_      |     |
|              | 190                  | 5(6P)   |     |     |           |         |            |     |

| Drive        | Impeller<br>speed    | Gear    |     | N   | Notor po | wer (kW | /)  |     |
|--------------|----------------------|---------|-----|-----|----------|---------|-----|-----|
| system       | (min <sup>-1</sup> ) | ratio   | 0.2 | 0.4 | 0.75     | 1.5     | 2.2 | 3.7 |
| В            | 350                  | 5       |     |     |          |         |     |     |
| _            | 280                  | 4.1(6P) |     | S   | 1        | S       | 2   |     |
| Belt reducer | 230                  | 5(6P)   |     |     |          |         |     |     |



Previous SO Type New S1 Type Previous S1 Type New S2 Type Previous S2 Type


## Bringing dreams to real design with advanced technology

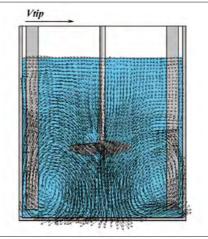
The impeller is selected according to the mixing purpose, mixing volume, physical properties, setting method, and impeller speed. The propeller and paddle types are often used to operate in low-viscosity liquids, whereas the Multi-S Mixer Series comes standard with the Supermix® HR700 and HS400 impellers (equipped with a single stage). These novel impellers are dream comes true based on various high-tech measurement and flow analysis methods such as Laser Doppler Velocimetry, P.T.V. and P.I.V.

## Supermix HR700 Impeller

The HR700 impeller features a twisted down curved blade with a moderate advanced blade shape. The shape of blade surface (blade width), angle of attack (especially at the blade tip), and camber ratio (arrow height) are the important factors that affect the performance of the blade. To prevent flow separation at the blade tip, we investigated the optimum shape of blade surface and camber ratio, as well also the optimum curvature angle that contributes to the discharge performance. As a result, we succeeded in developing a high discharge type of HR700 impeller with extremely high discharge performance. This impeller is surely to satisfy the customer's needs for mixing in different phase systems, solid-liquid mixing, and the combination of the two, as well. The HR700 impeller also can be used as a corrosion-resistant material against strong acidic and alkaline liquids by applying various types of rubber lining, FRP lining, or resin coating to the metal body.

## Discharge performance of HR700 impeller (at P/V constant)




### Performance of HR700 impeller

| qd(—) Nqo | d/Np <sup>1/3</sup> (—) |
|-----------|-------------------------|
|           |                         |
| 0.51      | 0.72                    |
| 0.70      | 0.88                    |
|           |                         |

by approx. 22%



## Flow pattern in a stirred tank using HR700 impeller



- \*The figure above shows the actual flow condition in a stirred tank captured by a CCD camera and analyzed by image processing (P.T.V.).
- \*High axial flow pattern can be well seen. (Flat discharge flow type shown in the high discharge impeller blade)

# Supermix HS400 Impeller

The HS400 impeller features a 4-bladed pitched paddle that has been modified to a tapered shape for maximum efficiency, resulting in low power consumption with improved discharge performance, while maintaining the characteristics of high discharge flow and slanted flow pattern. Additionally, the contact area between the impeller blade and the liquid surface gradually changes toward the center of the shaft when the liquid surface fluctuates, which has the advantage to reduce vibration. This impeller is surely to satisfy not only liquid-liquid mixing, but also solid-liquid suspension in general, as well also to prevent slurry from settling. Similar to the HR700 impeller, various types of rubber lining, FRP lining and resin coating are also available.



#### Performance of HS400 impeller

| flow rate | Discharge flow<br>per unit power |
|-----------|----------------------------------|
| Nqd(-)    | Nqd/Np <sup>1/3</sup> (—)        |
| 0.63      | 0.60                             |
| 0.70      | 0.69                             |
|           | Nqd(-) 0.63                      |

by approx. 15%

## Flow pattern in a stirred tank using HS400 impeller



\*The figure above shows the actual flow condition in a stirred tank captured by a CCD camera and analyzed by image processing (P.T.V.).

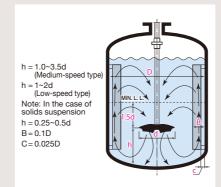
## SATAKE MULTI SMIXERS

#### Standard specifications

#### Standard specification for medium-speed type (Top-mount type)

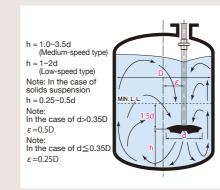
| Contro |                  | Matau Damas | HR700                  | Impeller               | Shaft length (from flange and below) |  |  |  |  |
|--------|------------------|-------------|------------------------|------------------------|--------------------------------------|--|--|--|--|
| Series | Model            | Motor Power | Impeller speed (min-1) | Impeller diameter (mm) | Overhung (Max. length)               |  |  |  |  |
| No.    |                  | (kW)        | 50/60(Hz)              | 50/60(Hz)              | (mm)                                 |  |  |  |  |
| 60     | ST04-GPR(S)-0.2  | 0.2         | 350                    | 250                    | 1,950                                |  |  |  |  |
| S0     | ST04-GPR(S)-0.4  | 0.4         | 350                    | 300                    | 1,750                                |  |  |  |  |
|        | ST14-GPR(S)-0.75 | 0.75        | 350                    | 360                    | 2,350                                |  |  |  |  |
| S1     | ST14-GPR(S)-1.5  | 1.5         | 350                    | 360                    | 2,200                                |  |  |  |  |
| 51     | ST16-GPR(S)-0.4  | 0.4         | 230                    | 360                    | 2,500                                |  |  |  |  |
|        | ST16-GPR(S)-0.75 | 0.75        | 230                    | 440                    | 2,500                                |  |  |  |  |
|        | ST24-GPR(S)-2.2  | 2.2         | 350                    | 440                    | 2,900                                |  |  |  |  |
| S2     | ST24-GPR(S)-3.7  | 3.7         | 350                    | 440                    | 2,600                                |  |  |  |  |
| 32     | ST26-GPR(S)-1.5  | 1.5         | 230                    | 530                    | 3,000                                |  |  |  |  |
|        | ST26-GPR(S)-2.2  | 2.2         | 230                    | 530                    | 2,900                                |  |  |  |  |

<sup>\*</sup>The dimensions in the table above are for a single stage setting of the standard HR700 impeller.


#### Standard specification for medium-speed type (Top-mount and shaft diameter size up type)

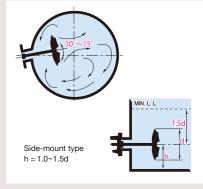
| Series |                   | Motor Power | HR700 Ir                            | mpeller                | Shaft length (from flange and below) |
|--------|-------------------|-------------|-------------------------------------|------------------------|--------------------------------------|
| No.    | Model             |             | Impeller speed (min <sup>-1</sup> ) | Impeller diameter (mm) | Overhung (Max. length)               |
| INO.   |                   | (kW)        | 50/60(Hz)                           | 50/60(Hz)              | (mm)                                 |
|        | ST14-GPR(S)-0.75S | 0.75        | 350                                 | 360                    | 2,750                                |
| S1S    | ST14-GPR(S)-1.5S  | 1.5         | 350                                 | 360                    | 2,700                                |
| 313    | ST16-GPR(S)-0.4S  | 0.4         | 230                                 | 360                    | 2,750                                |
|        | ST16-GPR(S)-0.75S | 0.75        | 230                                 | 440                    | 2,750                                |
|        | ST24-GPR(S)-2.2S  | 2.2         | 350                                 | 440                    | 3,200                                |
| S2S    | ST24-GPR(S)-3.7S  | 3.7         | 350                                 | 440                    | 3,050                                |
| 525    | ST26-GPR(S)-1.5S  | 1.5         | 230                                 | 530                    | 3,300                                |
|        | ST26-GPR(S)-2.2S  | 2.2         | 230                                 | 530                    | 3,300                                |

<sup>\*</sup> The dimensions in the table above are for a single stage setting of the standard HR700 impeller


### Mounting position and flow pattern

One of the factors that determines mixing efficiency is the mounting position of a mixer. To determine the mounting position of a mixer, decide the flow pattern that meets the mixing objective by considering the purpose, specific gravity, viscosity, and other properties of the liquid, as well as the mixing ratio, mixing time, etc.




#### Center mounting with baffles

The swirling flow is controlled by the baffles, thereby up-and-down flow becomes dominant. Since the flow becomes turbulent, the mixing effect is enhanced. Normally, two to four baffles are installed equally near the inner wall of the tank and perpendicular to the rotating flow is most suitable.

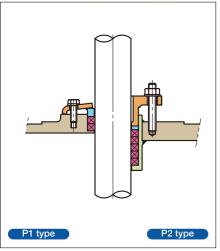


### Off-center mounting

In the case of mixing in low viscosity liquid particularly, if the mixer is mounted off-center without baffles inside the tank, it eliminates the concentric flow against the tank, resulting in good turbulent flow.



#### Side-mounting mixer


Generally, similar as to the vertical type, except that the side-mount type is mostly used in deep tanks with medium viscosity or less. For installation in a tank, it is necessary to maintain an off-center angle about 10° as shown in the figure above. This eliminates the need of baffles and also enables to prevent swirling flow.

<sup>\*</sup>The R (S) symbol has the same specifications in all cases

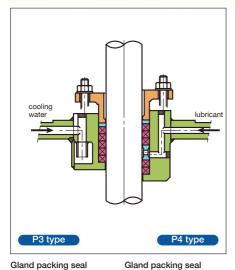
<sup>\*</sup> The R (S) symbol has the same specifications in all cases

# Shaft sealing system according to the purpose of use, operating conditions, and application

#### Shaft Sealing Systems - Top-mount type



#### Gland packing seal

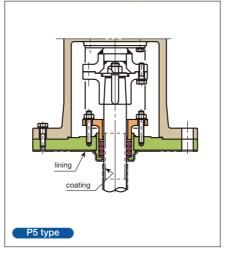

- Inside tank temperature:
- Inside tank pressure:
- It is not designed for a pressure-tight seal, but it

P1 type

#### Gland packing seal • Inside tank temperature:

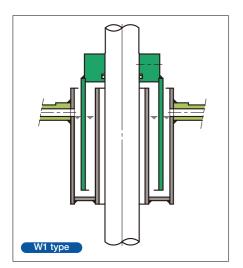
- 120°C or less Inside tank pressure
- It is used for low pressure

P2 type



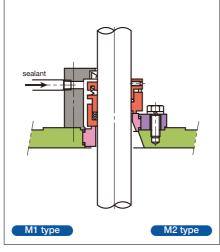

- Inside tank temperature: Between 121°C and 170°C
- Inside tank pressure: 3×10<sup>-2</sup> MPaG(0.3 kgf/cm<sup>2</sup>G)
- It is ideal for inside tank P3 type

#### • Inside tank temperature: 120°C or less


- Inside tank pressure: 0.1 MPaG(1.0 kgf/cm<sup>2</sup>G)
- Inject lubricant periodically gland packing. Seal the eaking fluid with the packing at the back of the lubricant with the packing

P4 type




- (Lining and coating of various parts in contact with liquid and gas)
- Inside tank temperature: 120°C or less
- Various types of metal lining and coatings (hastelloy, stellite, colmonoy, hard chrome plating, ceramic) are used on the sliding parts of the gland packing.

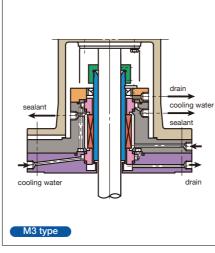
P5 type



#### Water seal

- Inside tank temperature: 100°C or less Inside tank pressure: 100mmAq (water column 100mm)
- Since there is no contact with the drive shaft, there is no damage to the shaft, less contamination by dust, and it is odor resistant, thereby making it easy to maintain



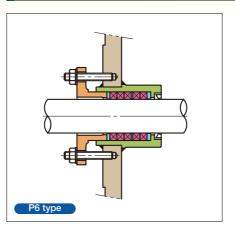

#### Single mechanical seal (For vacuum type mixing tank) Inside tank temperature:

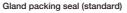
- 100°C or less Inside tank pressure: F.V.~3×10<sup>-2</sup> MPaG (0.3 kgf/cm<sup>2</sup>G) or less
- It is generally used for vacuum type mixing tanks that are not tolerant of leaks and sealing performance.

M1 type

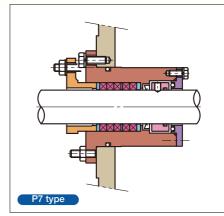
## Dry mechanical seal

- Inside tank temperature: 175°C or less
- F V ~0 19 MPaG (1.9 kgf/cm<sup>2</sup>G) or less
- This type of mechanical seal does not require sealant. It is used to prevent sealant from entering the tank. thereby prevent sealant from reacting with the gas or liquid in the tank.



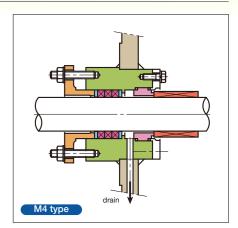


#### Double mechanical seal

- Inside tank temperature: 300°C or less
- Inside tank pressure: F.V.~0.99 MPaG (9.9 kgf/cm2G) or
- Vacuum inside tank: 1.0PaAbs is possible
- It is generally used in applications where leakage is not tolerated, and provides excellent sealing performance even under high temperature, low temperature, high pressure, and vacuum conditions. The integrated seal case with shaft-sleeve system is easy to install and remove, as well


M3 type

### Shaft Sealing Systems - Side-mount type





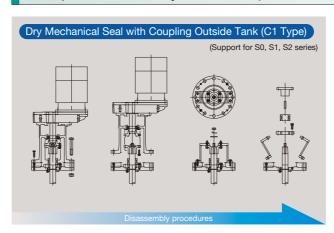

- Inside tank temperature: 120°C or less
- Inside tank pressure: 0.1 MPaG (1.0 kgf/cm²G) or less

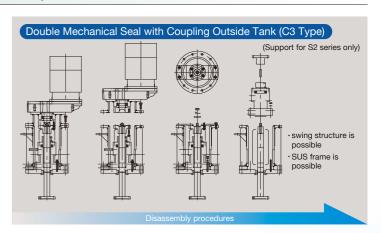


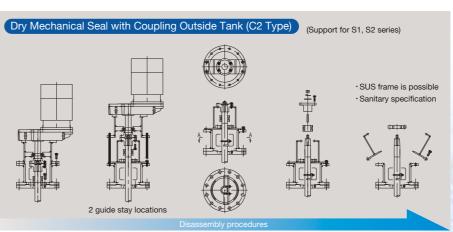
#### Gland packing seal (temporary seal system)

- Inside tank temperature: 120°C or less ● Inside tank pressure: 0.1 MPaG (1.0 kgf/cm²G) or less
- Gland packing can be replaced while tank is full.




#### Single mechanical seal + Gland packing

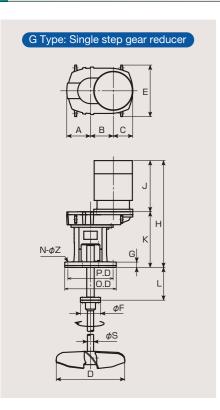

- Inside tank temperature: 120°C or less
- Inside tank pressure: 0.3 MPaG (3.0 kgf/cm²G) or less

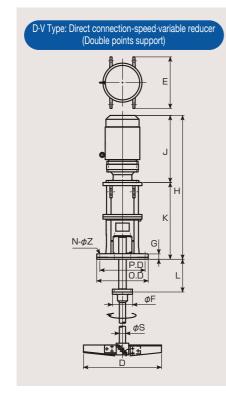

The gland packing seals the liquid in the tank when the mechanical seal starts to leak.

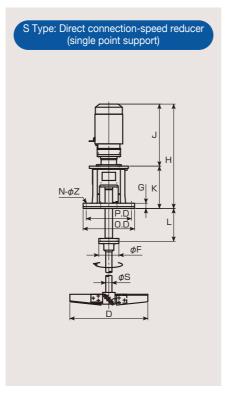
## Easy Replacement Type of Mechanical Seal

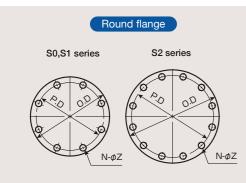
### **Example of Disassembly Procedures (Partial introduction)**

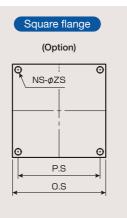


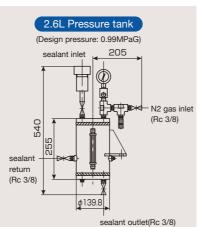




## More compact and powerful


#### Dimensional drawings for Top-mount type














### Regarding the operation that the liquid level passes over impeller position and empty operation

## What is the operation that the liquid level passes over impeller position?

In case of increasing or decreasing the liquid while running the mixer, the bottom impeller is from the stable condition without creating steady suction vortex (at the MIN.L.L. on the drawing) to the fully exposed in air condition (or conversely) within 10 minutes. Failure to do so may cause bending of the shaft. (Please check shaft runout, looseness of bolts, etc.)

#### What is empty operation?

A condition in which the bottom impeller is completely exposed in air due to operation through the liquid level. In the case of empty operation, there is no vibration control effect from the liquid, which can lead to shaft bending. Please stop the operation within 10 minutes.

#### Standard dimensions

Top-mount type (Unit

| Drive system                                                  | Series | <u> </u> | ower (kW) | O.D | P.D | N-øZ  | O.S          | P.S  | NS-øZS | G  | φF  | φS    | J   | К   | Н   | L         | А   | В   | С   | Е   |     | )   | Estimated weight |
|---------------------------------------------------------------|--------|----------|-----------|-----|-----|-------|--------------|------|--------|----|-----|-------|-----|-----|-----|-----------|-----|-----|-----|-----|-----|-----|------------------|
|                                                               | No.    | 4P       | 6P        |     |     | ·     |              |      |        |    |     | ·     |     |     |     |           |     |     |     |     |     |     | (kg)             |
|                                                               | S0     | 0.2      | -         | 210 | 175 | 8-19  | □210         | □175 | 4-19   | 23 | 79  | 20/25 | 206 | 258 | 464 | 160       | 95  | 86  | 80  | 216 | 250 | -   | 35               |
|                                                               | 30     | 0.4      | -         | 210 | 175 | 0-19  | <u>□</u> 210 |      |        | 23 | 19  | 20/23 | 230 | 200 | 488 | 100       | 90  | 00  | 00  | 210 | 300 | -   | 39               |
| G Type:                                                       | S1     | 0.75     | 0.4       | 280 | 240 | 8-23  | □280         | □240 | 4-23   | 28 | 109 | 30/35 | 260 | 317 | 577 | 211   128 | 100 | 124 | 100 | 280 | 360 |     | 72               |
| Single step gear reducer                                      | 31     | 1.5      | 0.75      | 200 | 240 | 0-23  | <u>□</u> 200 | □240 |        | 20 | 109 | 30/33 | 302 | 317 | 619 | 211       | 120 | 124 | 100 | 200 | 360 | 440 | 81               |
| godi roddooi                                                  | 00     | 2.2      | 1.5       | 000 | 000 | 10.00 |              |      | 4-23   | 00 | 100 | 40/45 | 328 | 357 | 685 | 010       | 450 | 440 | 105 | 000 | 440 | 530 | 121              |
|                                                               | S2     | 3.7      | 2.2       | 330 | 290 | 12-23 | □330         | □290 |        | 33 | 129 | 40/45 | 368 | 357 | 725 | 210       | 152 | 146 | 125 | 330 | 440 | 530 | 138              |
| D·V Type:                                                     | S0     | -        | -         | 210 | 175 | 8-19  | □210         | □175 | 4-19   | 23 | 79  | 20/25 | -   | 343 | -   | 160       |     |     |     | 210 | -   |     | 26               |
| Direct<br>connection-<br>speed-variable<br>reducer            | S1     | -        | -         | 280 | 240 | 8-23  | □280         | □240 | 4-23   | 28 | 109 | 30/35 | -   | 426 | -   | 211       |     |     |     | 320 | -   |     | 51               |
| (Double points) support                                       | S2     | -        | -         | 330 | 290 | 12-23 | □330         | □290 | 4-23   | 33 | 129 | 40/45 | -   | 492 | -   | 210       |     |     |     | 330 | -   |     | 82               |
| S Type: Direct connection-speed reducer (Single point support | S1     | -        | -         | 280 | 240 | 8-23  | □280         | □240 | 4-23   | 28 | 109 | 30/35 | -   | 246 | -   | 211       |     |     |     |     | -   |     | 35               |
|                                                               | S2     | -        | -         | 330 | 290 | 12-23 | □330         | □290 | 4-23   | 33 | 129 | 40/45 | -   | 272 | -   | 210       |     |     |     |     |     |     | 53               |

<sup>\*</sup>The dimensions J and H (G type: Single step gear reducer), and estimated weight in the table are calculated based on the totally-enclosed-fan-cooled motor for outdoor use. Therefore, they may vary slightly depending on the brand and specifications of the motor. Also, the dimensions J and H for D·V type of direct connection-speed-variable reducer and S type of direct connection-speed reducer vary depending on the brand.

#### Shaft diameter size-up specification (Top-mount type)

(Unit:mm)

| Drive system                                                               | Series | Motor power (kW) |      | 0.0     | D D  | N. 47 | 0.0       | Б.О. | NO 470 |     | 45    | 40    |     | 1/  |     |     | •   | _   |      | _   |     |     | Estimated weight |
|----------------------------------------------------------------------------|--------|------------------|------|---------|------|-------|-----------|------|--------|-----|-------|-------|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|------------------|
|                                                                            | No.    | 4P               | 6P   | O.D     | P.D  | N-φZ  | O.S       | P.S  | NS-øZS | G   | φF    | φS    | J   | K   | Н   | L   | Α   | В   | С    | Е   | D   |     | (kg)             |
| G Type:<br>Single step<br>gear reducer                                     | S1S    | 0.75             | 0.4  | 280     | 240  | 8-23  | □280      | □240 | 4-23   | 39  | 109   | 35/40 | 260 | 328 | 588 | 200 | 128 | 102 | 122  | 280 | 360 |     | 80               |
|                                                                            |        | 1.5              | 0.75 | 200 240 | 0-23 | 200   | 200   240 | 4-20 |        | 109 | 33/40 | 302   | 320 | 630 | 200 | 120 | 102 | 122 | 200  | 360 | 440 | 89  |                  |
|                                                                            | S2S    | 2.2              | 1.5  | 330 290 | 000  | 10.00 | □330      | □290 | 4-23   | 43  | 129   | 45/50 | 328 | 367 | 695 | 200 | 152 | 100 | 4.45 | 000 | 440 | 530 | 129              |
|                                                                            | 323    | 3.7              | 2.2  |         | 290  | 12-23 |           |      |        |     | 129   |       | 368 | 307 | 735 | 200 | 152 | 126 | 145  | 330 | 440 | 530 | 146              |
| D·V Type: Direct connection- speed·variable reducer (Double points support | S1S    | -                | -    | 280     | 240  | 8-23  | □280      | □240 | 4-23   | 39  | 109   | 35/40 | -   | 437 | 1   | 200 |     |     |      | 320 | -   |     | 59               |
|                                                                            | S2S    | -                | -    | 330     | 290  | 12-23 | □330      | □290 | 4-23   | 43  | 129   | 45/50 | -   | 502 | ,   | 200 |     |     |      | 330 | -   |     | 90               |

<sup>\*</sup>The dimensions J and H (G type: Single step gear reducer) and, estimated weight in the table are calculated based on the totally-enclosed-fan-cooled motor for outdoor use. Therefore, they may vary slightly depending on the brand and specifications of the motor. Also, the dimensions J and H for D·V type of direct connection-speed-variable reducer vary depending on the brand.

The mixer is for use in factory production.

Be sure to connect it to a power supply panel with safety functions (switch and protection device) before use.



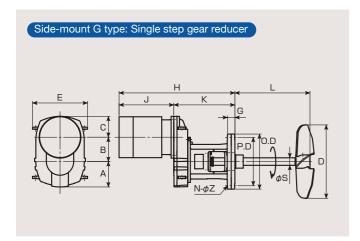
<sup>\*</sup>The dimensions G, K, and H, and estimated weight in the table are for the P1 of gland packing with round flange.

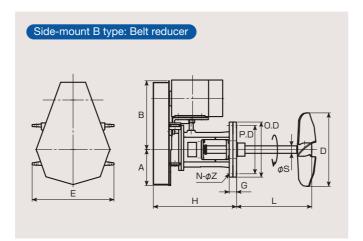
<sup>\*</sup> The dimension D for G type of single step gear reducer is for 4P-350min<sup>-1</sup> and 6P-230 min<sup>-1</sup>. Also, please consult us since the dimension D for D·V type of direct connection-speed-variable reducer and S type of direct connection-speed reducer varies depending on the mixing purpose, volume and properties.

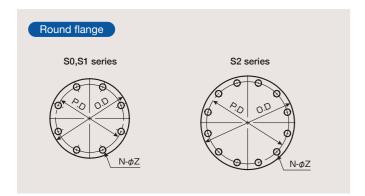
<sup>\*</sup>The estimated weight in the table do not include the weight of the mixing shaft, impeller, variable speed reducer, and gear reducer.

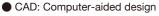
<sup>\*</sup> The standard paint color is approximately the value of 7.5GY6/3 of Munsell color system. The paint color of the motor is the manufacturer's standard color.

<sup>\*</sup> The dimensions G, K, and H, and estimated weight in the table are for the P1 of gland packing with round flange.


<sup>\*</sup> The dimension D for G type of single step gear reducer is for 4P-350min<sup>-1</sup> and 6P-230 min<sup>-1</sup>. Also, please consult us since the dimension D for D·V type of direct connection-speed-variable reducer varies depending on the mixing purpose, volume and properties.


<sup>\*</sup>The estimated weight in the table do not include the weight of the mixing shaft, impeller, variable speed reducer, and gear reducer.


<sup>\*</sup>The standard paint color is approximately the value of 7.5GY6/3 of Munsell color system. The paint color of the motor is the manufacturer's standard color.


# Cost savings through automated design and **FMS** production

### Dimensional drawings for Side-mount type











FMS: MC machine



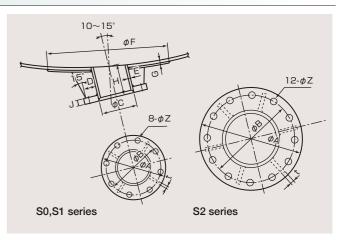
Inspection: Water load



#### Standard dimensions

Side-mount type

(Unit:mm)


| Drive system                           | Series | Motor po | wer (kW) |       |     | /-    | _    |    |     | .,  |     |     |     | _     | _     | _   |     |     | Estimated weight |
|----------------------------------------|--------|----------|----------|-------|-----|-------|------|----|-----|-----|-----|-----|-----|-------|-------|-----|-----|-----|------------------|
| Drive System                           | No.    | 4P       | 6P       | O.D   | P.D | N-¢Z  | G    | φS | J   | K   | Н   | L   | Α   | В     | С     | Е   | D   |     | (kg)             |
| G Type:<br>Single step<br>gear reducer | S0     | 0.2      | -        | 210   | 175 | 8-19  | 33   | 25 | 206 | 268 | 474 | 300 | 95  | 86    | 80    | 216 | 250 | -   | 39               |
|                                        | 30     | 0.4      | -        | 210   | 175 | 0-19  | 33   | 20 | 230 |     | 498 | 300 |     |       | 80    | 210 | 300 | -   | 42               |
|                                        | S1     | 0.75     | 0.4      | 280   | 240 | 8-23  | 39   | 35 | 260 | 328 | 588 | 400 | 128 | 124   | 100   | 280 | 360 |     | 78               |
|                                        | 01     | 1.5      | 0.75     | 200   | 240 | 0-2ა  | 39   | 33 | 302 |     | 630 | 400 | 120 | 124   | 100   | 200 | 360 | 440 | 87               |
|                                        | S2     | 2.2      | 1.5      | - 330 | 290 | 12-23 | 43   | 45 | 328 | 367 | 695 | 450 | 152 | 146   | 6 125 | 330 | 440 | 530 | 131              |
|                                        |        | 3.7      | 2.2      |       |     |       | 40   | 40 | 368 | 307 | 735 | 450 | 102 | 140   | 120   | 330 | 440 | 530 | 148              |
|                                        |        | 0.2      | -        |       |     | 8-23  | 3 39 | 35 |     |     | 441 |     |     |       |       | 412 | 250 | 1   | 79               |
|                                        | S1     | 0.4      | -        | 280   | 240 |       |      |    |     |     |     | 400 | 170 | (340) |       |     | 300 | 1   | 82               |
| B Type:<br>Belt                        | 31     | 0.75     | 0.4      | 200   | 240 | 0-23  |      |    |     |     |     |     | 170 | (340) |       |     | 36  | 60  | 89               |
| reducer                                |        | 1.5      | 0.75     |       |     |       |      |    |     |     |     |     |     |       |       |     | 360 | 440 | 97               |
|                                        | S2     | 2.2      | 1.5      | 330   | 290 | 12-23 | 43   | 45 |     |     | 499 | 450 | 215 | (420) |       | 490 | 440 | 530 | 142              |
|                                        | 52     | 3.7      | 2.2      | 330   | 230 |       | 43   | 45 |     |     | 433 | 450 | 215 |       |       | 490 | 440 | 530 | 166              |

<sup>\*</sup>The dimensions J and H (G type: Single step gear reducer), B (Belt reducer), and estimated weight in the table are calculated based on the totally-enclosed-fan-cooled motor for outdoor use.

### Nozzle dimensions for side-mount type mixer

Kindly refer to the table below when installing the side-mount mixer to a steel tank. Also, if the mixing tank is thin and insufficient strength, it is required to reinforce it with support legs or hanger bars.

| Series<br>No. | Nozzle size | φА  | φВ  | φC    | D  | Е   | φF  | G | Н   | J  | t  | φZ |
|---------------|-------------|-----|-----|-------|----|-----|-----|---|-----|----|----|----|
| S0            | 100A        | 210 | 175 | 114.3 | 40 | 6   | 400 | 6 | 100 | 18 | 6  | 19 |
| S1            | 150A        | 280 | 240 | 165.2 | 50 | 7.1 | 550 | 9 | 100 | 22 | 9  | 23 |
| S2            | 200A        | 330 | 290 | 216.3 | 50 | 8.2 | 650 | 9 | 100 | 22 | 12 | 23 |



For inquiries... Please specify the following items as we will recommend the most suitable mixer type for you.

- ① Tank geometry: Dimension (Cylindrical tank, Conical tank, etc.)
- 2 Tank condition: Open, Tightly close, Normal pressure, Internal pressure, Vacuum, With or without empty operation
- ③ Liquid property: Name of liquid, Specific gravity, Viscosity, Operating liquid temperature
- concentration, Particle size distribution (Mesh)
- ⑤ Liquid volume: Maximum liquid volume, Minimum liquid volume, Liquid volume changing during mixing (increasing or decreasing)
- © Operating condition: Batch type, Continuous flow in/out type, Liquid volume, Flow rate, Time lag
- Mixing purpose: Liquid-liquid mixing, Uniform mixing, Blending, Dissolution, Solids suspension, Reaction, Emulsification, Solid-liquid mixing, Suspension, Crystallization, Heat transfer, Dilution,
  - To what extent and in what condition do you want to achieve?
- Solid property: Name of solid, True density, Apparent density, Solids 
   Mixing time: Mixing time require for the above mixing purpose, number of times per day
  - 9 Material request for the impeller and mixing shaft:
    - We are ready to meet any material requirements, including acid-resistant steel, ordinary steel, and even rubber and various synthetic resin lining

Therefore, they may vary slightly depending on the brand and specifications of the motor. \* The dimension D for G type of single step gear reducer is for 4P-350min<sup>-1</sup> and 6P-230 min<sup>-1</sup>.

<sup>\*</sup>The standard paint color is approximately the value of 7.5GY6/3 of Munsell color system.